Genetic Engineering: One Tool Saving East Africa’s Bananas

Amanda Bryant Culp Posted on 06/06/2017 by Amanda Bryant Culp
Genetic Engineering: One Tool Saving East Africa’s Bananas

By Leena Tripathi
This blog post originally appeared on Medium.com.

The banana is an important fruit crop globally, and is one of the most important staple food crops in East Africa, particularly for Uganda, Tanzania, Burundi and Rwanda. It feeds more than 100 million Africans and is mainly grown by smallholder subsistence farmers. Annual global production of bananas is about 145 million tons and approximately a third of that production is in Africa. Uganda is the world’s third largest grower with a total annual production of about 10.5 million tons. It is Africa’s biggest producer and consumer of bananas. Annual per capita consumption of bananas in Uganda is the highest in the world at 0.70 kilogram daily per person. The traditional meal called ‘Matooke’ — a mashed meal consisting of green bananas (plantain), which are peeled, boiled (or steamed in banana leaves), is the main food for Ugandans.

Xanthomonas Wilt Disease

The production of bananas is affected by several diseases and pests. Banana Xanthomonas wilt (BXW) is a bacterial disease threatening the production of bananas and the livelihoods of millions of growers in East Africa. The disease was originally reported in Ethiopia and first identified in Uganda in 2001 and subsequently in the Democratic Republic of Congo, Rwanda, Kenya, Tanzania, and Burundi. This disease affects all types of bananas in Africa. Economic losses of about $2 to 8 billion have been reported over a decade in East Africa. BXW starts with wilting of leaves or male buds and premature ripening of fruits, leading to the death of plants and rotting of fruits. It causes severe infections, which can cause a complete loss of a plantation. Once BXW occurs in a field, there is no option other than removing all infected plants. BXW disease is transmitted mainly by insects, contaminated farming tools and infected planting materials.

The economic impact of the disease is potentially disastrous because it destroys whole plants leading to complete yield loss, and farmers do not have the option of relocating to new planting sites that are infection free. The production losses are about 65 to 80 percent in Democratic Republic of Congo and Uganda, and 40 to 50 percent in other countries in East Africa. It causes crop production losses of more than $500 million every year. Solutions have to be found fast before this disease destabilizes food security in the region.

Management of Xanthomonas Wilt Disease

Currently there are no commercial chemicals, biocontrol agents or resistant varieties available to control BXW. It can be managed by following cultural practices, such as the cutting and burying of infected plants, restricting the movement of banana planting materials from BXW affected areas to disease-free areas, using clean farming tools and removing male buds. However, the adoption of these practices has been inconsistent as these techniques are labor intensive.

GM Bananas resistant to BXW disease

Given the rapid spread and devastation of BXW across the continent, genetic engineering tools offer an effective, safe and viable way to develop resistant varieties.

So far, resistance to BXW disease has not been found in any banana varieties. Even if resistant varieties are identified, traditional breeding of bananas to transfer resistance to farmer-preferred varieties is a difficult and lengthy process due to the sterility of most varieties and long generation times. Genetic engineering, which facilitates the transfer of useful genes across species, has been shown to offer numerous advantages to circumvent the natural bottlenecks to breeding bananas for its improvement. It provides a cost-effective alternative to develop banana varieties resistant to BXW disease.

Click here to read the full blog post.

As part of GMO Answers’ GPS on GMOs series, GMO Answers is highlighting some of science and agriculture’s revolutionary female leaders and their research in specific parts of the world. The following post is the first installment of this series and highlights the cutting-edge research being led by Leena Tripathi, Principal Scientist and Deputy Regional Director of East Africa Hub of International Institute of Tropical Agriculture (IITA). Her research focuses on finding a solution to Banana Xanthomonas wilt, a disease devastating the banana crop in the region.

 

Leena Tripathi is Principal Scientist and Deputy Regional Director of East Africa Hub of International Institute of Tropical Agriculture (IITA). She is leading the transgenic research at IITA and her primary research focuses on genetic improvement of banana, plantain, cassava, enset (Ethiopian banana) and yam for disease and pest resistance to enhance production, which will lead the food security, income and well being of resource-poor farmers in sub-Saharan Africa.

Join Our Mailing List

Sign up here to receive NASDA News.